CopperSpice API
1.9.2
|
The QSystemSemaphore class provides a general counting system semaphore. More...
Public Types | |
enum | AccessMode |
enum | SystemSemaphoreError |
Public Methods | |
QSystemSemaphore (const QString &key, int initialValue=0, AccessMode mode=Open) | |
~QSystemSemaphore () | |
bool | acquire () |
SystemSemaphoreError | error () const |
QString | errorString () const |
QString | key () const |
bool | release (int n=1) |
void | setKey (const QString &key, int initialValue=0, AccessMode mode=Open) |
The QSystemSemaphore class provides a general counting system semaphore. A semaphore is a generalization of a mutex. While a mutex can be locked only once, a semaphore can be acquired multiple times. Typically, a semaphore is used to protect a certain number of identical resources.
Like its lighter counterpart QSemaphore, a QSystemSemaphore can be accessed from multiple threads. Unlike QSemaphore, a QSystemSemaphore can also be accessed from multiple processes. This means QSystemSemaphore is a much heavier class, so if your application does not need to access your semaphores across multiple processes, you will probably want to use QSemaphore.
Semaphores support two fundamental operations: acquire() and release().
The acquire() method tries to obtain a single resource. If there is no resource available the call blocks until a resource does become available. Once the resource is acquired the call returns.
The release() method releases one resource so it can be acquired by another process. This method can also be called with a parameter n > 1, which releases n resources. A typical application of system semaphores is for controlling access to a circular buffer shared by a producer process and a consumer processes.
A system semaphore is created with a key that other processes can use to access the same semaphore. The following is an example showing how to create a system semaphore.
When using this class be aware of the following platform differences.
Windows
Unix
This enum is used by the constructor and setKey(). Its purpose is to enable handling the problem in Unix implementations of semaphores that survive a crash. In Unix, when a semaphore survives a crash, we need a way to force it to reset its resource count, when the system reuses the semaphore. In Windows where semaphores can not survive a crash, this enum has no effect.
Constant | Value | Description |
---|---|---|
QSystemSemaphore::Open | 0 | If the semaphore already exists, its initial resource count is not reset. If the semaphore does not already exist, it is created and its initial resource count set. |
QSystemSemaphore::Create | 1 | QSystemSemaphore takes ownership of the semaphore and sets its resource count to the requested value, regardless of whether the semaphore already exists by having survived a crash. This value should be passed to the constructor, when the first semaphore for a particular key is constructed and you know that if the semaphore already exists it could only be because of a crash. In Windows where a semaphore can not survive a crash, Create and Open have the same behavior. |
This enum is a list of the possible error codes.
Constant | Value | Description |
---|---|---|
QSystemSemaphore::NoError | 0 | No error occurred. |
QSystemSemaphore::PermissionDenied | 1 | Operation failed because the caller did not have the required permissions. |
QSystemSemaphore::KeyError | 2 | The operation failed because of an invalid key. |
QSystemSemaphore::AlreadyExists | 3 | Operation failed because a system semaphore with the specified key already existed. |
QSystemSemaphore::NotFound | 4 | Operation failed because a system semaphore with the specified key could not be found. |
QSystemSemaphore::OutOfResources | 5 | Operation failed because there was not enough memory available to fill the request. |
QSystemSemaphore::UnknownError | 6 | Unknown error. |
QSystemSemaphore::QSystemSemaphore | ( | const QString & | key, |
int | initialValue = 0 , |
||
AccessMode | mode = Open |
||
) |
Requests a system semaphore for the specified key. The parameters initialValue and mode are used according to the following rules, which are system dependent.
In Unix, if the mode is Open and the system already has a semaphore identified by key, that semaphore is used, and the semaphore's resource count is not changed, i.e., initialValue is ignored. But if the system does not already have a semaphore identified by key, it creates a new semaphore for that key and sets its resource count to initialValue.
In Unix, if the mode is Create and the system already has a semaphore identified by key, that semaphore is used, and its resource count is set to initialValue. If the system does not already have a semaphore identified by key, it creates a new semaphore for that key and sets its resource count to initialValue.
In Windows mode is ignored, and the system always tries to create a semaphore for the specified key. If the system does not already have a semaphore identified as key, it creates the semaphore and sets its resource count to initialValue. But if the system already has a semaphore identified as key it uses that semaphore and ignores initialValue.
The mode parameter is only used in Unix systems to handle the case where a semaphore survives a process crash. In that case, the next process to allocate a semaphore with the same key will get the semaphore that survived the crash, and unless mode is Create, the resource count will not be reset to initialValue but will retain the initial value it had been given by the crashed process.
QSystemSemaphore::~QSystemSemaphore | ( | ) |
The destructor destroys the QSystemSemaphore object, but the underlying system semaphore is not removed from the system unless this instance of QSystemSemaphore is the last one existing for that system semaphore.
Two important side effects of the destructor depend on the system. In Windows, if acquire() has been called for this semaphore but not release(), release() will not be called by the destructor, nor will the resource be released when the process exits normally. This would be a program bug which could be the cause of a deadlock in another process trying to acquire the same resource. In Unix, acquired resources that are not released before the destructor is called are automatically released when the process exits.
bool QSystemSemaphore::acquire | ( | ) |
Acquires one of the resources guarded by this semaphore, if there is one available, and returns true. If all the resources guarded by this semaphore have already been acquired, the call blocks until one of them is released by another process or thread having a semaphore with the same key.
If false is returned, a system error has occurred. Call error() to get a value of QSystemSemaphore::SystemSemaphoreError that indicates which error occurred.
SystemSemaphoreError QSystemSemaphore::error | ( | ) | const |
Returns a value indicating whether an error occurred, and, if so, which error it was.
QString QSystemSemaphore::errorString | ( | ) | const |
QString QSystemSemaphore::key | ( | ) | const |
Returns the key assigned to this system semaphore. The key is the name by which the semaphore can be accessed from other processes.
bool QSystemSemaphore::release | ( | int | n = 1 | ) |
Releases n resources guarded by the semaphore. Returns true unless there is a system error.
The following example creates a system semaphore having five resources, acquires them all and then release them all.
This function can also "create" resources. For example, immediately following the sequence of statements above, suppose we add the statement:
Ten new resources are now guarded by the semaphore, in addition to the five that already existed. You would not normally use this function to create more resources.
void QSystemSemaphore::setKey | ( | const QString & | key, |
int | initialValue = 0 , |
||
AccessMode | mode = Open |
||
) |
This function works the same as the constructor. It reconstructs this QSystemSemaphore object. If the new key is different from the old key, calling this function is like calling the destructor of the semaphore with the old key, then calling the constructor to create a new semaphore with the new key. The initialValue and mode parameters are as defined for the constructor.